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Abstract 

Diagnostic techniques related to process control loop performance is not uncommon.  In fact there are 

many different ways to identify process control issues. This paper will introduce a new method for 

identifying intermittent non oscillatory wave forms. The result of this disturbance identification method is 

fast, yet accurate, and can help quickly identify intermittent issues in 100’s of controllers at a time. 

 

Introduction 

This paper has roots to the paper industry.  Several years ago a problem related to intermittent issues was 

solved.  However, that solution was focused on cross direction profile applications.  This paper will focus 

on how this solution was rotated 90 degrees so that it can be applied to time based signals.  The following 

figure shows the difference between cross direction and machine direction data series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Measurement System 

As the sensor head moves from one edge of the sheet to the next, sensor data is converted into profiles that 

align in the cross direction and trends that align with the machine direction.   Machine direction trends are 

time based measurements that can be thought of as measurements that are typically found in industrial 

transmitters such as flow, pressure, temperature, consistency, etc. 

 

This paper will first review the solution as it applies to cross direction applications and then build on this 

solution to solve the problem related to intermittent time based measurements. 

 

Cross Direction Intermittent Disturbance Identification 

 

A common measure of profile variability is the 2 sigma (2σ) as defined in (1). 
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Where niip ≤≤1)(  is a profile, p  is profile average and n is the size of the profile 
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The 2σ is a global index that measures the variability across the entire sheet. A profile is bound by the first 

and last measurement in scan.  In other words, there is no data before or after the last measurements.  

Typically the units of measure in a cross direction profile are spacial in nature rather than time.  The 

calculation of the 2 sigma is a very effective measure of the variability of the entire profile. However, it is 

rather ineffective for indication of localized variability. Figure 1 shows two profiles with identical 2σ, but 

having significantly different localized uniformity. If only the 2σ of the profile is used to evaluate profile 

performance, then the localized variability of the second profile will never be detected. 
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Figure 1 - Profiles with identical 2σ but different localized uniformity 

 

There are several issues that can cause local issues in a profiles and those are defined in the paper 

referenced at the end of this paper.  This paper is not concerned with the source of the problem, but the 

detection of the problem.  Figure 2 is easy to pick out the area of local problem with the human eye, but it 

is difficult to mathematically find where or when this wave form is presented.  The mathematical 

identification solution for finding this local variability problem is shown as follows. 

 

Based on the definition in (1), the global measure of profile variability, 2σ, is calculated for the entire width 

of a profile. In other words, the 2 sigma is a function of the first and last measurement in the profile.  The 

localized measure of profile uniformity can be defined for a localized window of a profile as indicated in 

Figure 2. 
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Figure 2 – Definition of Local Variability Index ρ(k, w)  
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The local measure at the location k is a normalized variability over a localized window width, 2w+1. This 

measure is called the “Local Variability Index” and is denoted as “ρ(k,w)”. The Local Variability Index 

ρ(k,w) is defined as 
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where w is the window size as indicated in Figure 2 and 
kp  is the local profile average over the specified 

window. 

 

Basically, the standard deviation of the local window is compared with the standard deviation of the entire 

profile.  If the ratio is 1, then the local window and global window have similar variations.  Theoretically, 

the local variability index ρ(k,w) is a function of its location k and the selected window parameter w. In 

practice, a fixed window can be used for all locations so that the derived local variability indices at 

difference CD locations can be compared with each other. The maximum ρm, as defined in (3), among all 

locations can be used as a single index of the localized variability of the entire profile. The severity of local 

variability of a profile is quantifiable with a single value, ρm. The maximum local variability index ρm, 

together with 2σ, gives users very good measures of both local and global variability for any profile. 
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Figure 3 gives an example of using both 2σ and ρm to quantify profile global and local variability 

respectively. The 2σ’s of all profiles in this example are at a normal level even in the presence of several 

severe local picket fences appearing in some of the profiles. The occurrence of the picket fence pattern is 

well correlated to the change in the ρm value. This indicates that ρm is a good measure of localized 

uniformity. 
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Figure 3 – Example of using 2σ and ρm to quantify performance 

 

The index ρm is useful for quantifying the effect of non oscillatory disturbances in the measured profiles.  

 



Quantifying Intermittent Disturbances 

   4 

 

Machine Direction Intermittent disturbance identification 

 

Machine direction signals are time based signals.  These signals have characteristics that match common 

PID controlled measured values.  There are several functions available for solving different persistent based 

wave forms.  However, intermittent issues related to, pumps starting or stopping, cleaning cycles, power 

and grounding failures, surges, etc. often pass through persistent based disturbance identification methods.  

The LVI (Local Variability Index) described in the CD Profiles section above can be used to identify those 

signals with intermittent disturbance in the time domain.  The following figure illustrates the definitions of 

the necessary windows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Time Measurement Signals 

In the time domain, the data is not bound to the edge of the sheet.  In other words there is data before and 

after the start of the history window.  Therefore a bound has to be defined.  In this case the history can be 

identified by the user, but it is often set to cover the span associated with 12 hours of information.  Typical 

sample rates are 5 to 10 seconds.  Once a collection or history buffer has been defined, the global sigma 

will be derived from the history buffer.  The local variable will be defined by a sliding window of width w.  

W is typically defined by the user but values associated with 5 to 10 minutes of data are sufficient. 

Once the history and sliding window sizes have been set, the LVI equation used in the CD discussion is 

exactly the same.  In this case the local variability of the sliding window at a point in time ( ),( wkρ )is 

defined as: 
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where w is the sliding window size and 
kp  is the local signal average over the specified window (from 

index i-w to index i+w) and σ  is the variability (standard deviation) of the entire history window (H) of 

the signal time series data.   

 

For continuous monitoring, the term step size is introduced.  Step size defines when the next history or 

batch of data should be analyzed.  Step size can be defined in number of samples, amount of time, or in 

percent of the window size.  If percent is used and the step size is 100%, then the first sample of the next 

history will start after the last sample of the previous history.  In the following example, the step size 

percent is shown greater than 100 percent. 
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Figure 5: Step size 

The conversion of the LVI calculation into a trend helps users visually see where local variability is 

present.  A trend of LV is simply the time results of the ratio of the sliding window variability to the history 

variability.  The following example shows the raw data associated with a single history buffer and the 

associated LVI trend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: LVI Trend with Threshold 

Trending the LV for a history allows a user to easily identify where regions of local variability are located.  

Since intermittent (local) disturbances affect the variability of the sliding window more than the variability 

of the entire history, the LVI for points near intermittent disturbances will be greater than 1.0.  The ratio of 

the sliding window and history window variability will grow with the intensity of the intermittent 

disturbance.  Comparing the ratio to a threshold allows for automatic detection of signals being impacted 

by local variability.  Typical threshold values are 1.4 to 1.6.  A value of 1.5 means the variability of the 

sliding window is 50% higher than the global variability.  Those signals which have runs of consecutive 

LVI values that exceed the LVI threshold are considered to have intermittent disturbances. 
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There are several statistics that can be applied to the LVI trend.  Four common ones are shown in the 

following figure.   

 
 

Figure 7 – Example of a PID MV signal with intermittent disturbances and LVI statistics 

Where:   

• LVI Max is the maximum LVI value for the entire history window.   

• LVI Max Run is the maximum number of consecutive LVI values in excess of the LVI threshold 

(1.5).  

• LVI Mean is the mean value of the LVI values.   

• The LVI Severity is based upon the number of runs of LVI values greater than the LVI threshold 

and by how much the LVI values in those runs exceed the LVI threshold.  

 

The LVI Severity can then be used for ranking the signals identified as having intermittent disturbances.  

This is especially useful when evaluating 100’s of control loops.  The following sorted table allows the user 

to quickly identify those signals that are being impacted most severely by intermittent disturbances. 

 

 
 

Figure 10 – Intermittent disturbances ranked by severity. 
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All the examples in this paper are from actual industrial processes.  The following example helped 

identify problems with cleaning cycles in the stock approach system of a paper machine.  In this case the 

process fluid was dirty and a cleaning cycle was installed to purge the build up.  The application would 

force the actuator to 100 percent at intervals of every hour.  This would allow the build up to pass through 

this part of the process.  The problem was that this cleaning cycle actually resulted in a disturbance to a 

down stream process.  The analysis of the intermittent disturbances quickly identified the down stream 

variables that were being upset by this cleaning cycle. 

 

The top plot shows the output being forced to 100 percent every one hour.  The bottom plot shows the 

down stream impact this cleaning cycle was having.  Notice how the control tried to fix the problem.  

However just as the control was making its correction, the disturbance was over.  The result was an 

unnecessary change in controller output.  This caused a subsequent upset in the measured value that 

actually also impacted the original signal.   

 

Using the LVI identification allows for this problem to be quickly identified.  The solution was to 

clamp the output of the down stream controller during the purge cycle.  This stopped the unnecessary 

controller actions of the down stream controller and helped stabilize the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Cleaning Cycle induces downstream problem 
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